Подписка на новости

Опрос

Нужно ли ввести комментарии к статьям? Комментировали бы вы?

Реклама

2006 №3

Стандарт IEEE 802.11n

Крылов Юлий


«Беспроводные сети, существующие и проектируемые, предусматривают некоторые наложения на границе своих сфер применения. Эти технологии сосуществуют, создавая много новых, захватывающих возможностей», — сказал Шон Малоней, генеральный директор группы коммуникаций компании Intel. В статье пойдет речь об особенностях стандарта IEEE 802.11n, будут приведены примеры аппаратного обеспечения, совместимого с данным стандартом беспроводной передачи данных.

Введение

В то время как технология Wi-Fi идеально подходит для развертывания беспроводной сети на небольших площадях, стандарты WiMAX и 3G предусматривают организацию доступа на больших дистанциях, обеспечивая охват от одной до шести миль, предоставляя таким образом доступ к жилым домам, к инфраструктуре населенных пунктов, транспорта и т. д. 3G — спецификация ITU для быстродействующих беспроводных коммуникаций. Этот тип беспроводной связи совместим с GSM, TDMA, и CDMA. Поколение 3G обеспечит беспроводной доступ дальнего действия для передачи голоса и данных.

3G является лучшей альтернативой для мобильных устройств, таких как PDA, КПК и сотовые телефоны. Сверхширокополосный доступ — UWB (Ultra Wide Band) — это проект беспроводной сети класса WPAN, которая может обеспечить высокую скорость передачи данных (до 400 Мбит/с) на коротких дистанциях. Среди наиболее интересных применений сверхширокополосного доступа можно отметить стандарт беспроводного USB (wUSB), который позволит вывести взаимодействие компьютерной периферии и бытовой электроники на принципиально новый уровень.

Сосуществующие одновременно технологии 3G, UWB, Wi-Fi и WiMAX будут обеспечивать обмен данными в любое время, в любом месте, где необходима возможность соединения. Тем временем, наметилась тенденция замедления внедрения оптоволоконных сетей в ожидании новых возможностей беспроводных технологий. Инженеры сосредоточивают свои усилия на разработке беспроводных устройств связи, что позволит популяризировать широкополосные беспроводные коммуникации.

Поскольку наблюдается постоянная тенденция к увеличению производительности устройств и, соответственно, пропускной способности их интерфейсов, наблюдается постоянное развитие стандарта WLAN и появляются новые поколения WLAN.

В ответ на эти тенденции при союзе IEEE была создана группа разработчиков (IEEE TGn) для выполнения разработки стандарта следующего поколения WLAN. По результатам исследования IEEE TGn ведется разработка стандарта IEEE 802.11n, скорость передачи данных в котором будет превышать 100 Мбит/с.

И, что очень важно, технология 802.11n поддерживает все прежние основные платформы, включая корпоративные производственные сети и мобильные платформы, а также бытовую электронику. Два основных положения, на которых «держится» новый стандарт — более широкая полоса пропускания и технология MIMO (Multiple Input Multiple Output, множественный вход, множественный выход) — удовлетворяют высоким требованиям производительности этого поколения сетей WLAN. В то же время, высокая производительность невозможна без реконструкции уровня управления доступом (МАС). Остановимся более подробно на эволюции этого стандарта.

Таблица 1.
Стандарт IEEE 802.11n

Разработка стандарта IEEE 802.11n

Стандарт IEEE 802.11 (WLAN) был принят как дополнительная технология к быстродействующему стандарту IEEE 802. 3 (Ethernet) для портативных и мобильных устройств. Причина успешного применения состоит в том, что он поддерживает увеличение скорости передачи данных при относительно низких затратах. Стандарты IEEE 802.11, IEEE 802.11b и IEEE 802.11a/g обеспечивают скорости передачи данных 2 Мбит, с, 11 Мбит/с, и 54 Мбит/с соответственно.

Рабочая группа IEEE внесла некоторые изменения в 802.1, назвав новую спецификацию 802.11n. Основным требованием при разработке стандарта является получение более высокой производительности и большей скорости передачи данных. Отметим, что разные по цели стандарты IEEE 802.11b/. 11a/. 11g обеспечивают высокоскоростные уровни передачи данных по различным физическим уровням (PHY).

Стандарт IEEE 802.11n должен реализовать высокую производительность при более высоком уровне PHY и увеличении скорости работы уровня управления доступом к среде (МАС). Процесс разработки стандарта IEEE 802.11n имеет три стадии:

  • стадия 1 — этап подготовки (с января до сентября 2002 г.);
  • стадия 2 — исследование возможностей увеличения производительности (работа IEEE 802.11 HTSG с сентября 2002 г. до сентября 2003 г.);
  • стадия 3 — разработка стандарта IEEE 802.11n; работа целевой группы (TGn) в этом направлении началась в сентябре 2003 г. и, как ожидается, закончится в марте 2007 г.

Первое формальное совещание (стадия 1) об увеличении объема передачи данных по стандартам IEEE 802 состоялось в январе 2002 г. в Далласе, штат Техас (США). На этом совещании г-н Джонс (Mr. Jones) представил высокие требования к увеличению скорости передачи данных — более, чем 100 Мбит/с для стандарта IEEE 802.11, и описал технические аспекты реализации, как то: способы модуляции, методики кодирования, сделал обзор методов пространственного мультиплексирования (MIMO) и сообщил о необходимости удвоения полосы пропускания по сравнению со стандартом IEEE 802.11a. В Сиднее участники IEEE 802, встречаясь в мае 2002 г., доказали, что существует теоретический верхний предел производительности протокола IEEE 802.11.

В течение второй стадии проектного решения были установлены пять критериев для развития стандарта:

  • Широкий рыночный потенциал: то есть возможность широкого применения, многочисленные пользователи и сбалансированные затраты.
  • Совместимость: для совместимости требуется сохранение МАС интерфейса SAP, что касается уже существующих стандартов 802.11. Новый стандарт должен быть определен в формате и структуре, совместимой с существующими стандартами 802.11.
  • Отличительная идентичность: каждый стандарт IEEE 802 будет иметь набор отличий от другого стандарта IEEE 802.
  • Техническая выполнимость: исследования в первой и во второй стадии проекта показали техническую выполнимость стандарта. Кроме того, в настоящее время уже есть надежные WLAN-решения.
  • Экономическая целесообразность: экономическая целесообразность включает в себя соотношения известных факторов стоимости, формулирует требования разумной стоимости для реализации стандарта и оценивает общий уровень затрат.

Первая официальная встреча целевой группы IEEE 802.11n (TGN) (стадия 3) имела место в сентябре 2003 г. в Сингапуре. В результате стандарт IEEE 802.11n запланировали полностью издать в марте 2007. Как было выяснено, параметры IEEE 802.11n должны обеспечивать два фактора: повышение производительности уровня МАС и реконструкция PHY.

Если с реконструкцией уровня PHY все более или менее ясно (основное требование — увеличение полосы пропускания), то с уровнем МАС все не так просто. Реконструкция сообщения, то есть разумное сокращение служебных полей наряду с кодированием, называется нормализацией. Нормализуя сообщения, мы достигаем большей производительности (TUL — Throughput Upper Limit) при передаче данных. Существование TUL показывает, что при увеличении скорости передачи данных без сокращения служебной информации (другими словами без проведения нормализации) производительность весьма ощутимо ограничивается даже в тех случаях, когда скорость передачи данных бесконечно высока. Иначе говоря, сокращение служебных разрядов необходимо для стандарта IEEE 802.11с той целью, чтобы достигнуть поставленных требований высокой производительности.

Производительность — TUL — определяется следующим образом:

TUL = 8Ldata / 2Tp+Tphy+Tdifs+Tsifs+(CWmin-1) Tslot/2.

Определить различие между скоростью передачи данных и производительностью помогает нормализация данных. Например, нормализованная производительность равна 1 при 180 Мбит/с в том случае, когда размер полезной информации составляет 100 байт. Нормализованная производительность достигает 70% при 180 Мбит/с, когда размер полезной информации составляет 1500 байт (рис. 1).

Рис. 1. а) Графики зависимости MT и TUL для спецификации IEEE 802.11. б) Нормализованные накладные расходы в зависимости от скорости передачи данных и размера полезной информации

Где:

MT — максимальная производительность (maximum throughput);

LDATA — полезная информация в байтах;

Tp, Tphy — служебные разряды преамбулы заголовка физического уровня PHY;

Tslot, Tsifs, Tdifs — таймслоты: короткий (SIFS), дифференцированный (DIFS).

Другой путь для повышения скорости передачи данных стандарта IEEE 802.11 — концепция сжатия цикла МАС. Механизмы сжатия цикла (МСЦ) предоставляют множество преимуществ. Прежде всего, при передаче длинного цикла, можно достичь большей производительности, чем при передаче более короткого цикла. Используя эти механизмы, система может достигнуть большей производительности при передаче более длинных циклов. Другое, более важное преимущество — то, что эти механизмы могут уменьшить служебные разряды. Без этих механизмов передача каждого цикла нуждается в отдельном заголовке. С использованием этих механизмов, наоборот, вместо нескольких заголовков для различных циклов будет использоваться только один. Наконец, применение этих механизмов может способствовать уменьшению средней задержки. В противном случае, второй или более поздний цикл будет передан в намного более позднее время. С этими механизмами информация будет передана намного быстрее. Возникает одна проблема — в том, какой величины должна быть полная длина сжатого цикла. Одно ясно — что число сжатых циклов не должно быть большим, чем порог, при пересечении которого достоверность сообщения не может быть обеспечена. Аналогично, полная длина сжатых циклов должна быть меньше, чем другой порог, который является меньшим или равным порогу фрагментации сообщения.

Цель этих механизмов не состоит в том, чтобы строить огромные сжатые циклы, а подразумевает выбор разумного компромиссного решения. Чрезмерно большие циклы могут иметь плохую эффективность. Кроме того, сжатый цикл не резервирует механизм фрагментации. Фактически, предложенные механизмы требуют, чтобы полная длина сжатого цикла была меньше, чем порог фрагментации. Поэтому получим несжатый цикл, который был первоначально произведен предыдущим механизмом фрагментации. С другой стороны, сжатый цикл не будет фрагментирован, так как полная длина является меньшей, чем порог фрагментации.

Итак, стандарт IEEE 802.11n продолжает совершенствоваться для обеспечения повышения скорости передачи данных. Мы выделяем служебные разряды как фундаментальную проблему неэффективности уровня МАС. Простое увеличение скорости передачи данных «в лоб» однозначно не может помочь в решении проблемы. Не следует забывать, что заголовок является очень большим, если скорость передачи данных высока или размер цикла чрезмерно мал. Поэтому новые эффективные пути модернизации уровня МАС просто необходимы. Предлагается несколько вариантов совершенствования уровня МАС — уменьшать служебные разряды при помощи сжатия цикла. В результате изучения всех аспектов этой проблемы и ее перспектив был сформулирован верхний предел производительности с использованием схемы сжатия цикла. Отдельного рассмотрения заслуживает технология MIMO как базовая для последующих поколений беспроводных сетей. Использование MIMO позволяет добиться:

  1. Высокоскоростной передачи данных, за счет увеличения числа используемых потоков данных;
  2. Обеспечивает возможность установки соединения среди множества потоков данных;
  3. В итоге способствует увеличению скорости передачи данных по сравнению с SISO-системой.

Технология MIMO настолько интересна и многогранна, что ее рассмотрение выходит за рамки настоящей статьи.

WLAN Plus

Рынок сетей WLAN растет, управляемый бурным ростом мультимедийных возможностей современной электроники. Согласно ABI, по информации на март 2005 г., в 2008 г будут проданы приблизительно 150 млн чипсетов 802.11n WLAN. На настоящий момент в области реализации стандарта 802.11n безусловным лидером в мире является компания Metalink. Компанией разработан и производится чипсет WLAN Plus в соответствии с требованиями стандарта 802.11n (рис. 2).

Чипсет WLAN Plus
Рис. 2. Чипсет WLAN Plus

Производитель позиционирует чипсет WLAN Plus как основу беспроводных устройств для таких областей применения, как:

  • автоматизация зданий и сооружений;
  • индивидуальное медицинское диагностическое оборудование;
  • промышленная автоматизация, управление процессами и мониторинг;
  • управление доступом и освещением;
  • персональные компьютеры и периферийное оборудование;
  • потребительская электроника;
  • IP-телефония.

Технология WLAN Plus обеспечивает высокую производительность и, благодаря своим уникальным техническим возможностям, имеет множество применений, не доступных для аппаратного обеспечения других производителей электронных компонентов. Один из возможных примеров использования чипсета 802.11n показан на рис. 3.

Пример использования чипсета 802.11n
Рис. 3. Пример использования чипсета 802.11n

Oсновные особенности WLAN Plus

WLAN Plus представляет собой законченное архитектурное решение из двух микросхем — микросхемы обеспечения доступа к физическому уровню PHY с поддержкой технологии MIMO (MtW8150) и микросхемы MAC-уровня MtW8170. Перечислим основные особенности чипсета WLAN Plus:

  1. Поддержка технологии MIMO 2×2 или 2×3, для обеспечения высокой производительности и качества обслуживания.
  2. Рабочий диапазон частот микросхемы PHY 4,9…5,6 ГГц при скорости передачи данных до 243 Мбит/с.
  3. Возможность увеличение диапазона рабочих частот.
  4. Совместимость со стандартом 802.11a и поддержка 802.11b/g.
  5. Соддержка дополнительных схем обеспечения безопасности (WPA2, 802.11i).
  6. Поддержка (WMM) (Wireless Multi-Media) 802.11e.
  7. Встроенная поддержка PCI, Ethernet, и других интерфейсов.

Радиотрансивер MtW8150, структурная схема которого приведена на рис. 4, представляет собой автономную RFIC микросхему с поддержкой MIMO. Это основной элемент в решении WLAN Plus компании Metalink. Отметим, что микросхема имеет встроенный локальный генератор (LО — Local Oscillator, гетеродин), который обслуживает не только микросхему MtW8150, но и доступен для тактирования других элементов схемы. MtW8150 использует прямое преобразование частоты и нуждается во внешнем SAW-фильтре, настроенном на основную полосу частот. Радиочастотный RSSI-детектор позволяет осуществить точный автоматический контроль (AGC) устройства, так же как и достичь лучшего в этом классе устройств устранение интерференции. Для изготовления микросхемы MtW8150 используется техпроцесс на подложке из SiGe. Микросхема помещена в пластмассовый корпус TAPP (Thin Array Plastic Package) размерами всего 11Ч11 мм. Номинальное рабочее напряжение равно 3,0 В, что позволяет без проблем использовать микросхему в портативных устройствах с автономным питанием. Микросхема MtW8150 использует два полных канала RF, предназначенные для того, чтобы обеспечить соответ ствие технологии MIMO стандарта IEEE 802.11n. Кроме того, отметим, что микросхема MtW8150 реализует два приемопередатчика в составе: AGC и RSSI.

Функциональная схема MtW8150
Рис. 4. Функциональная схема MtW8150

Архитектурa WLAN Plus

Ключевые особенности архитектуры чипсета (рис. 5) заключаются в следующем:

  • впервые в мире реализована поддержка 2×2 MIMO в одном чипе;
  • обеспечена совместимость стандартов IEEE 802.11n и IEEE 802.11a;
  • поддержка EVM модуляций до QAM 64;
  • лучшие в классе спектральные характеристики;
  • использование пространственного мультиплексирования, чтобы передать или принять два независимых потока данных по тому же самому каналу частоты;
  • две полных и независимых цепи RF;
  • каналы на 20 МГц для совместимости со стандартом IEEE 802.11a;
  • разделение частоты одного локального генератора LО между многочисленными цепями чипсета;
  • поддержка высокоразрядной MIMO (например, 4х4) с реальным функционированием;
  • поддержка переключения приёмной антенны;
  • динамическое разделение данных в каналах, чтобы отрегулировать изменяющееся SNR;
  • обратная связь для калибровки Tx/Rx;
  • быстрый и простой параллельный интерфейс;
  • быстрое переключение между приёмом и передачей;
  • простой интерфейс с baseband-контроллером;
  • отдельный контроль для каждой цепи RF;
  • независимый контроль мощности;
  • поддержка BPSK, QPSK, 16-QAM и 64-QAM.
Архитектура WLAN Plus
Рис. 5. Архитектура WLAN Plus

С этим комплектом разработчики устройств для стандарта IEEE 802.11 могут концентрироваться на развитии их соб ственного приложения вместо того, чтобы сосредотачиваться на проблемах реализации WLAN. Это позволяет существенным образом снизить затраты проекта и обеспечить более быстрый вывод изделия на рынок.

Оценочный комплект

Оценочный комплект (рис. 6) позволяет пользователям проверить оборудование и оценить возможности технологии Metalink WLAN Plus MIMO. Оценочный комплект WLAN Plus позволяет следующие возможности:

  • оценку возможностей чипсета Metalink MtW8170 и MtW 8150;
  • разработка приложения для WLAN с учетом особенностей чипсета;
  • предоставление возможностей быстрого вывода изделия на рынок с минимумом затрат.
Внешний вид оценочного комплекта
Рис. 6. Внешний вид оценочного комплекта

Комплект состоит из двух плат: платы mPCI и платы управления. Плата управления используется совместно с mPCI, чтобы обеспечить дополнительные варианты интерфейса с модулем WLAN Plus MIMO. Плата управления содержит слот mPCI, разъемы интерфейсов Ethernet и USB 2.0 для подсоединения к другим устройствам. Плата mPCI содержит чипсет Metalink WLANPlus MIMO, MtW8170, baseband-контроллер и радиотрансивер MtW8150. Поддерживаются конфигурации MIMO 2×2 и 2×3, а интерфейс mPCI позволяет подсоединять любые устройства, имеющие интерфейс mPCI.

Поддержка программного обеспечения

Оценочный комплект WLAN Plus поставляется с программным обеспечением для операционных систем Windows XP и Linux. Структура программного обеспечения чипсета WLAN Plus приведена на рис. 7. В заключение хотелось бы отметить, что архитектура ПО такова, что позволяет совершенствовать и в будущем добавлять конфигурации, которые в настоящее время не поддерживаются WLAN-системой. Указанный аспект представляется весьма актуальным с точки зрения масштабирования приложений, что особенно важно в современных условиях быстрого роста требований к электронной аппаратуре.

Структура по WLAN Plus
Рис. 7. Структура по WLAN Plus

Скачать статью в формате PDF  Скачать статью Беспроводные технологии PDF


Другие статьи по данной теме:

Сообщить об ошибке