Смарт-антенны в системе WiMax
Введение
В новом поколении системы связи WiMax оборудование будет содержать две основные категории антенн — это антенны базовых станций и антенны пользовательских терминалов. Работы по созданию смарт-антенн для базовых станций мобильных телефонов позволили использовать эти идеи и внедрить на практике сложные адаптивные антенны в аппаратуре четвертого поколения мобильной связи WiMax. Таким образом, кроме традиционных однолучевых, например, с сектором 120°, сегодня можно применять две новые группы базовых антенн: адаптивные антенны и антенны MIMO (multi-input, multi-output). Антенны для абонентских терминалов для начала можно разделить на две группы: для фиксированной связи и для мобильной связи с подвижными пользователями, расположенными в автомобилях, поездах и т. д. Все эти основные типы использования показаны на рис. 1.
Для уточнения терминологии приведем определения различных вариантов антенн:
- Антенны с переключаемыми лучами — это набор излучателей с неподвижной диаграммой направленности и ключи для управления этими лучами. Для данного пользователя базовая станция или терминал выбирает наилучший луч. Переключение лучей позволяет уменьшать или увеличивать усиление, но только в направлении, где эти лучи существуют.
- Антенны со сканированием луча. Антенная решетка содержит фазовращатели и аттенюаторы, подключенные к антенному сигнальному процессору. Луч внутри сектора ориентируется с помощью процессора в нужном направлении. Плавное сканирование дает существенные преимущества для точного наведения на пользователя или на базовую станцию. Такие антенны используют различные математические методы для создания оптимального луча с максимумом в направлении пользователя и с минимумом в направлении помехи.
Антенна для неподвижного пользовательского терминала
При развертывании системы ставится задача надежного покрытия зон беспроводной связи и ликвидации мертвых зон. Как это всегда бывает, скорости передачи данных для Интернета и быстрой передачи аудио- и видеоинформации недостаточно. Есть два пути увеличения скорости передачи данных в беспроводных сетях – это улучшение эффективности кодирования данных на несущей частоте и снижение количества повторных передач данных, которое обычно происходит при слабом радиоприеме. Улучшить качество сигнала можно за счет увеличения мощности передатчика и повышения чувствительности приемника. Для этого нужно добавить новые усилители мощности и малошумящие усилители в приемной части. Но это не только увеличивает цену для роутеров и портов, но и противоречит нормативным документам.
Но есть другой, более эффективный и недорогой путь улучшения качества сигнала. Можно сконструировать антенну, которая передает основную мощность в заданном направлении. Такие антенны могут также принимать сигналы с заданного направления гораздо лучше, чем из всех других направлений. Теперь представим устройство с несколькими направленными антеннами, которые автоматически выбирают заданное направление, оптимизированное для передачи данных. Это и есть адаптивная антенна.
Традиционные антенны, такие как «диполь» или « пэтч», используемые в роутерах и резидентных портах, излучают энергию равномерно в горизонтальной плоскости, то есть имеют всенаправленную диаграмму направленности. Переключаемые антенны [1] имеют 25 лучей в горизонтальной плоскости, каждый из которых дает 7 дБ усиления в пике, то есть уровень сигнала в три раза выше, чем у стандартного диполя с усилением 2 дБ. Испытания такой многолучевой антенны проводились по трем категориям:
- высокое пропускание на скорости 20–30 Мбит/с;
- средние скорости 10–20 Мбит/с;
- малые скорости 0–10 Мбит/с.
Используя статистические измерения в каждой категории (при 95-процентной надежности) терминал с многолучевой антенной давал по сравнению с дипольным на 6,7 Мбит/с большее пропускание на средних скоростях и на 90% выше пропускание в областях с малым радиосигналом.
Антенны для пользовательских терминалов с автопоиском сигнала
Для фиксированных наружных терминалов можно применить многолучевую антенну с усилением 7–10 дБ, которая обеспечивает увеличение сигнала на направлении от базовой станции и уменьшает помеховый сигнал со всех остальных направлений. Схема построения такой антенны и диаграммы направленности приведены на рис. 2. Антенна состоит из излучателей (дипольных или микрополосковых) с фиксированной диаграммой направленности и переключателя.
Многолучевая антенна может существенно улучшить скорость передачи данных. Важной особенностью многолучевой антенны является то, что она автоматически наводится на направление базовой станции или на наилучшее направление, если нет прямой видимости, а работа проходит в условиях многолучевого распространения радиоволн. Этот режим называется автопоиск или самонастройка (self installable).
На рынке можно найти комнатные 6-лучевые и 8-лучевые антенны для работы в диапазоне 2,5 и 3,5 ГГц. Пример такой антенны приведен на рис. 3 [2]. Антенны этого типа имеют в максимальном направлении на базу усиление до 10 дБ и подавление сигналов со всех других направлений 15–20 дБ. Это позволяет добиться увеличения пропускной способности радиоканала и иметь устойчивую связь в помещении, если происходит изменение условий радиообстановки (то есть при изменении положения компьютера, мебели и т. п.) Антенна постоянно проводит автопоиск наилучшего направления луча и дает максимальное усиление. Внешний вид комнатной антенны, располагаемой в непосредственной близости от персонального компьютера, показан на рис. 4.
Антенны мобильных терминалов
Возможность автопоиска и непрерывного слежения за лучом чрезвычайно важны и для другого класса аппаратуры — мобильных абонентских терминалов. При размещении компьютера с блоком WiMax в автомобиле встроенная ненаправленная антенна дает сигнал связи с малой пропускной способностью, а дополнительная внешняя многолучевая антенна с усилением 10 дБ значительно увеличивает зону уверенного приема, улучшает качество связи и скорости передачи данных. Для обеспечения высокого усиления антенна крепится на крыше автомобиля, как показано на рис. 5. Следует учесть, что в условиях города связь с мобильными терминалами происходит преимущественно без прямой видимости на базовую станцию, и именно в этих сложных условиях распространения адаптивные антенны реализуют свои основные преимущества.
Антенны базовых станций
Концепция использования антенных решеток и сигнальных процессоров в беспроводных системах связи известна уже много лет. А в последние годы из-за снижения цены на цифровые сигнальные процессоры (DSP), а также на программируемые сигнальные процессоры стало возможным использование на практике адаптивных антенных систем. Адаптивные антенны необходимы, так как число пользователей быстро растет, а с другой стороны — затрудняется распространение радиоволн, ухудшается помеховая обстановка. Адаптивные антенны — это объединение антенной решетки и DSP для формирования оптимальной диаграммы направленности в пространстве. Это позволяет системе менять направление излучения, адаптируясь к условиям передачи сигнала, что приводит к существенному улучшению характеристик радиосвязи.
Используя новейшие алгоритмы, реализованные в сигнальных процессорах, адаптивные системы позволяют эффективно находить и отслеживать сигналы от пользовательского терминала с минимальной интерференцией и максимальным качеством приема. Адаптивная антенна для сектора в 120° содержит, как правило, от 4 до 8 элементов, входы и выходы которых объединены в диаграммообразующей схеме с фазовращателями и аттенюаторами для адаптивного управления [3]. Если обычная антенна с шириной луча 120 с двумя элементами дает 15 дБ, то адаптивная антенна с 8 элементами имеет максимальное усиление 24 дБ. Диаграмма направленности такой сканирующей антенны изображена на рис. 6а. Основные элементы, образующие антенну, показаны на рис. 6б. Антенна имеет 12 рядов излучателей, в каждом из которых по 8 элементов. Каждый ряд представляет собой решетку печатных диполей. Центральные 8 рядов — с активными элементами, остальные 4 ряда — с пассивными. Узкий луч с высоким усилением образован за счет суммирования сигналов со всех рядов. Размер антенны для частоты 3,5 ГГц составляет 0,7×0,6 м.
На базовых станциях фирмы «Алкател» также используются 2- и 4-элементные антенны с диграммообразующими схемами и алгоритмами, увеличивающими пропускную способность каналов на 40% и уменьшающими на 80% влияние помехи [4].
Дополнительное улучшение качества связи оборудования «Алкател» дает система MIMO. Эта технология используется совместно и дополняет возможности смарт-антенн и поэтому кратко опишем эту систему.
Специфика использования системы MIMO
MIMO — это система пространственно-временного кодирования, которая создает выигрыш за счет разделения потока данных через две или более антенны по разным пространственным путям, переключающимся на лучшее направление, или работающим одновременно. Этот способ пространственного разделения, а затем объединения и эффективен для подавления помех.
Технология MIMO была рекомендована для системы WiMax в декабре 2006 года, форум WiMax признал ее частью мобильного WiMax с примечанием — как возможная опция. Руководство крупных фирм не считает очевидным использование системы MIMO в базовых станциях в ближайшие годы [5]. Одним из главных недостатков является то, что при этом повышается цена за пользовательский терминал, требуется дополнительное место и дополнительная энергия от источника питания. И если теоретически пропускная способность в MIMO системах удваивается, то на практике, видимо, удвоения не будет, и это зависит от того, какую полосу частот будет использовать провайдер.
Эффективность канала связи с адаптивными антеннами
Основным параметром беспроводной связи является спектральная эффективность канала. Для повышения спектральной эффективности нужно многократное использование частоты и высокий порядок модуляции (16QAM, 64 QAM). Эффективность измеряется в бит/с/Гц/ на соту. Вторым показателем емкости канала является пропускная способность на единицу площади соты бит/с/Гц/миля². Адаптивные антенны в беспроводных сетях WiMax повышают об этих параметра, а также увеличивают зоны покрытия. Так, исследования Стэндфордского университета [6] показали, что эффективность по спектру может подняться на 2,5 бит/с/Гц/на соту, а эффективность на единицу площади зоны — на 0,8 бит/с/Гц/ миля².
Использование адаптивных антенн как на базовых станциях, так и на абонентских терминалах может увеличить спектральную эффективность от 3 до 10 раз.
Заключение
Технология адаптивных антенн предполагает наличие антенных решеток на базовой станции и на абонентском терминале, объединенных с модуляторами и цифровыми сигнальными процессорами для улучшения следующих параметров беспроводной системы:
- увеличения зоны покрытия;
- емкости системы;
- пропускной способности.
Адаптивные антенны могут использоваться как на базовой станции, так и в абонентском терминале. Преимущества такого подхода:
- когерентное сложение сигнала, увеличивающее отношение сигнал/шум;
- пространственное разнесение излучателей в решетке помогает бороться с замиранием;
- подавление помех благодаря адаптивному объединению элементов решетки в диаграмму направленности с максимумом в направления прихода полезного сигнала и минимумом в направлении помехи;
- пространственное мультиплицирование каналов.
- www.airgain.com /ссылка утрачена/
- www.mpa.co.il /ссылка утрачена/
- www.mti-group.com
- Flavio Boano. Alcatel WiMax. Enhanced Radio Features. CAMAD 2006 Trento.
- Dan O’Shea. MIMO on the March. 2006
- Khurram Shekh, David Gesbert, Dhananjay Gore, Arogyaswami Paulraj. Smart antennas for broadband wireless access networks // IEEE Communication Magazine. Nov. 1999.